Definisi Jarak antara dua buah bangun adalah panjang ruas garis penghubung terpendek yang menghubungkan dua titik pada bangun-bangun tersebut. Jarak Titik ke Titik Jarak antara dua titik adalah dengan menarik garis hubung terpendek antara kedua titik tersebut, jadi jarak antara titik A dan B adalah panjang garis AB. Jika titik dalam koordinat cartesius maka jarak kedua titik adalah Jarak titik ke Garis Jarak titik ke garis adalah jarak terdekat sebuah titik ke garis, jarak terdekat diperoleh dengan menarik garis yang tegak lurus dengan garis yang dimaksud. Jarak titik B dengan garis g adalah panjang garis BBβ Jarak Titik dengan bidang Untuk menentukan jarak sebuah titik pada suatu bidang, maka terlebih dahulu ditarik garis lurus yang terdekat dari titik ke bidang, sehingga memotong bidang dan garis tersebut harus tegak lurus dengan bidang. Misalkan titik B terletak di luar bidang a maka jarak titik B ke bidang a dapat ditentukan sebagai berikut Jarak titik B ke bidang a adalah panjang garis BBβ Jarak Dua Garis Sejajar Jika ada dua garis yang sejajar, maka jarak kedua garis dengan menarik garis yang tegak lurus dengan kedua garis tersebut. Seperti tampak pada gambar di samping, dimana garis g dan h adalah dua garis yang sejajar, maka jarak kedua garis tersebut adalah garis PR. Jarak Antara Dua Garis yang Bersilang Dua garis dikatakan saling bersilang jika kedua garis tersebut tidak sejajar dan terletak pada dua bidang yang berbeda, seperti tampak pada gambar di bawah garis AH bersilangan dengan garis FC. Untuk menentukan jarak kedua garis tersebut di atas lakukan langkah berikut a. Buatlah bidang ο‘ dan Ξ² yang sejajar, dengan ketentuan garis AH pada bidang ο‘ dan garis FC pada bidang Ξ² seperti pada gambar di bawah b. Carilah jarak antara dua bidang ADHE dan bidang BCGF. Sehingga jarak antara garis AH dan FC adalah garis PQ. Jarak Garis ke bidang yang sejajar Untuk mengukur jarak garis ke bidang yang sejajar, maka terlebih dahulu kita tentukan titik sembarang pada garis kemudian kita tarik garis lurus dari titik tersebut ke bidang sehingga garis yang terbentuk tegak lurus terhadapa bidang. Seperti tampak pada gambar di bawah. Jarak garis g ke bidang a adalah garik PPβ. Jarak Bidang ke Bidang Untuk mengukur jarak dua bidang, pilihlah sembarang titik pada salah satu bidang kemudian ditarik garik luruh dari titik yang telah ditentukan ke bidang lainya, sehingga garis yang terbentuk tegak lurus terhadap kedua bidang. Seperti tampak pada gambar berikut Jarak antara bidang Ξ² dan a adalah garis AB. Agar lebih memahami materi ini, silahkan download file bahan belajar berikut ini Jarak Titik, Garis, dan Bidang
titikC ke bidang BDG, dan jarak titik E ke bidang BDG. =4 = 1 2 = 1 2 4β2 =2β2 =β(2β2) 2 +42 =β8+16 =2β6 Dengan sifat keebangunan pada segitiga PXC
Kelas 12 SMADimensi TigaJarak Titik ke BidangJarak Titik ke BidangDimensi TigaGEOMETRIMatematikaRekomendasi video solusi lainnya0158Diketahui limas segi empat beraturan TABCD dengan panjang...0400Diketahui kubus ABCD EFGH dengan panjang rusuk 6 cm. Jara...0416Diketahui kubus dengan panjang rusuk 4 cm. Jika...0219Diketahui kubus dengan AB=6 cm. Jarak A ke bid...Teks videojika melihat soal seperti ini maka pertama-tama kita gambar dulu bidang bdg nya kita gambar segitiga bdg kemudian kita akan tarik garis tengah dari segitiga bdg yaitu dari tengah-tengah di garis BD kita misalkan titik ini adalah titik p dari Q ke p kemudian untuk mencari jarak titik e ke bidang bdg yaitu kita buat segitiga baru yaitu segitiga EGP EGP kemudian Jarak titik e ke bidang bdgKita bisa tarik Garis dari titik e ke suatu titik di garis GP misalkan titik ini adalah titik Q perlu kita ingat bahwa diagonal sisi adalah a. β 2 kemudian panjang TP karena CP merupakan setengah dari diagonal atau setengah dari AC maka C P adalah setengah kali 8 akar 2 yaitu 4 akar 2 kemudian kita tinjau segitiga GC GC GC adalah 8 cm dan c b adalah 42 cm maka kita bisa mencari panjang GP dengan menggunakan rumus phytagoras yaitu akar c b kuadrat ditambah C kuadrat yaitu akar 4 akar 2 kuadrat ditambah 8 kuadrat jika kita masukkan kalkulator Maka hasilnya akan menjadi akar 96 atau 4 akar 6 kita juga lihat di gambar bawa panjang itu salah dengan panjang GP yaitu 4 akar 6 juga DG karena ini merupakan diagonal sehingga EG adalah 8 β 2 kemudian kita bisa tinjau segitiga Epic kita Gambarkan segitiga dengan titik Qkemudian kita bisa Misalkan titik tengah di garis EG sebagai titik r kemudian ketahui Garis dari P panjang P dan G P adalah 4 β 6 panjang EG adalah 8 β 2 sehingga panjang R adalah 4 akar 2 karena setengahnya R adalah setengah dari 8 akar 24 akar 2 kemudian kita bisa mencari panjang PR dengan menggunakan rumus phytagoras juga PR adalah p p kuadrat dikurangi r kuadrat yaitu 4 akar 6 kuadrat dikurangi 4akar 2 kuadrat jika kita masukkan ke kalkulator Maka hasilnya akan menjadi akar 64 yaitu 8 kemudian cara menentukan panjang PQ kita bisa dengan menggunakan perbandingan luas jadi kita bandingkan dua segitiga yaitu luas segitiga dengan luas segitiga PQR itu setengah iki sebagai alasnya dan PR sebagai tingginya kemudian setengah PG dan dikali Eki setengahnya kita bisa coret kemudian EG adalah 8 akar 2 dan PR adalah 8 kemudianitu juga 4 akar 6 dan PQ adalah panjang yang kita cari maka q adalah 8 akar 2 dikali 8 dibagi 4 akar 6 hasilnya akan menjadi 16 per 3 akar 3 cm jadi Jarak titik e ke bidang bdg adalah kita bisa jawab 16 per 3 akar 3 cm sampai jumpa di pertanyaan berikutnyaSukses nggak pernah instan. Latihan topik lain, yuk!12 SMAPeluang WajibKekongruenan dan KesebangunanStatistika InferensiaDimensi TigaStatistika WajibLimit Fungsi TrigonometriTurunan Fungsi Trigonometri11 SMABarisanLimit FungsiTurunanIntegralPersamaan Lingkaran dan Irisan Dua LingkaranIntegral TentuIntegral ParsialInduksi MatematikaProgram LinearMatriksTransformasiFungsi TrigonometriPersamaan TrigonometriIrisan KerucutPolinomial10 SMAFungsiTrigonometriSkalar dan vektor serta operasi aljabar vektorLogika MatematikaPersamaan Dan Pertidaksamaan Linear Satu Variabel WajibPertidaksamaan Rasional Dan Irasional Satu VariabelSistem Persamaan Linear Tiga VariabelSistem Pertidaksamaan Dua VariabelSistem Persamaan Linier Dua VariabelSistem Pertidaksamaan Linier Dua VariabelGrafik, Persamaan, Dan Pertidaksamaan Eksponen Dan Logaritma9 SMPTransformasi GeometriKesebangunan dan KongruensiBangun Ruang Sisi LengkungBilangan Berpangkat Dan Bentuk AkarPersamaan KuadratFungsi Kuadrat8 SMPTeorema PhytagorasLingkaranGaris Singgung LingkaranBangun Ruang Sisi DatarPeluangPola Bilangan Dan Barisan BilanganKoordinat CartesiusRelasi Dan FungsiPersamaan Garis LurusSistem Persamaan Linear Dua Variabel Spldv7 SMPPerbandinganAritmetika Sosial Aplikasi AljabarSudut dan Garis SejajarSegi EmpatSegitigaStatistikaBilangan Bulat Dan PecahanHimpunanOperasi Dan Faktorisasi Bentuk AljabarPersamaan Dan Pertidaksamaan Linear Satu Variabel6 SDBangun RuangStatistika 6Sistem KoordinatBilangan BulatLingkaran5 SDBangun RuangPengumpulan dan Penyajian DataOperasi Bilangan PecahanKecepatan Dan DebitSkalaPerpangkatan Dan Akar4 SDAproksimasi / PembulatanBangun DatarStatistikaPengukuran SudutBilangan RomawiPecahanKPK Dan FPB12 SMATeori Relativitas KhususKonsep dan Fenomena KuantumTeknologi DigitalInti AtomSumber-Sumber EnergiRangkaian Arus SearahListrik Statis ElektrostatikaMedan MagnetInduksi ElektromagnetikRangkaian Arus Bolak BalikRadiasi Elektromagnetik11 SMAHukum TermodinamikaCiri-Ciri Gelombang MekanikGelombang Berjalan dan Gelombang StasionerGelombang BunyiGelombang CahayaAlat-Alat OptikGejala Pemanasan GlobalAlternatif SolusiKeseimbangan Dan Dinamika RotasiElastisitas Dan Hukum HookeFluida StatikFluida DinamikSuhu, Kalor Dan Perpindahan KalorTeori Kinetik Gas10 SMAHukum NewtonHukum Newton Tentang GravitasiUsaha Kerja Dan EnergiMomentum dan ImpulsGetaran HarmonisHakikat Fisika Dan Prosedur IlmiahPengukuranVektorGerak LurusGerak ParabolaGerak Melingkar9 SMPKelistrikan, Kemagnetan dan Pemanfaatannya dalam Produk TeknologiProduk TeknologiSifat BahanKelistrikan Dan Teknologi Listrik Di Lingkungan8 SMPTekananCahayaGetaran dan GelombangGerak Dan GayaPesawat Sederhana7 SMPTata SuryaObjek Ilmu Pengetahuan Alam Dan PengamatannyaZat Dan KarakteristiknyaSuhu Dan KalorEnergiFisika Geografi12 SMAStruktur, Tata Nama, Sifat, Isomer, Identifikasi, dan Kegunaan SenyawaBenzena dan TurunannyaStruktur, Tata Nama, Sifat, Penggunaan, dan Penggolongan MakromolekulSifat Koligatif LarutanReaksi Redoks Dan Sel ElektrokimiaKimia Unsur11 SMAAsam dan BasaKesetimbangan Ion dan pH Larutan GaramLarutan PenyanggaTitrasiKesetimbangan Larutan KspSistem KoloidKimia TerapanSenyawa HidrokarbonMinyak BumiTermokimiaLaju ReaksiKesetimbangan Kimia Dan Pergeseran Kesetimbangan10 SMALarutan Elektrolit dan Larutan Non-ElektrolitReaksi Reduksi dan Oksidasi serta Tata Nama SenyawaHukum-Hukum Dasar Kimia dan StoikiometriMetode Ilmiah, Hakikat Ilmu Kimia, Keselamatan dan Keamanan Kimia di Laboratorium, serta Peran Kimia dalam KehidupanStruktur Atom Dan Tabel PeriodikIkatan Kimia, Bentuk Molekul, Dan Interaksi Antarmolekul . 452 30 491 31 115 485 133 143